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ic zero and all field extensions are finite.

Let a be algebraic over a field F. Prove that |F (@) : F], the dimension of F'(a) as a F-vector
space, equals the degree of the irreducible polynomial of « over F. (6)

Find the irreducible polynomial of i + 4\/2 over Q. (4)

Let K C L C M be fields. Prove that (M : L] [L : K= |M: K] (6)
Let F,a be as in Q.1(a). If [F(a) : F] is odd, prove that F (a?) = F(a). (4)

Let f be an irreducible cubic equation over F, and let § be the square root, of the discriminant of
f. Prove that f remains irreducible over the field /' (4). (5)

Let K be the splitting field of a polynomial f with distinct roots «y,... ,a,,. Then the Galois

group G of f may be regarded as a subgroup of the symmetric group S,. Prove that a change of
numbering of the roots changes G to a conjugate subgroup. (5)

. Let K be a Galois extension of F with Galois group G

e

Let f be an irreducible polynomial over F and g and h be two of its irreducible factors over K.
Prove that the degree of g equals that of h. (5)

For any subgroup H of G, prove that there exists 3 € K whose stabiliser is H, (5)

Compute the discriminant of z* + 1 and compute its Galois group over Q. (5)
p

Let f be an irreducible quartic polynomial over Q with exactly two real roots. What can you say
about its Galois group over Q? (5)

Let a € F and p be a prime. Suppose that the polynomial zP — a is reducible in F'[z]. Prove that
it has a root in F. (5)

Let &, denote the primitive 11th root of unity. Find an element that generates a subfiekd of
Q (§11) having degree 5 over Q and find its equation. (5)

Let £, be the primitive nth root of unity for an integer n. Prove that Q (£,) is a Galois extension
of Q. (5)

Sketch the outline of the proof that every quadratic extension of Q is contained in a cyclotomic
extension of Q. (5).



